2015届硕士毕业生
发布人: 网站管理员 发布时间: 2020-06-30 作者: 访问次数: 34

论文题目:沙袋结构对PP/IFR/EPDM共混体系的性能影响及机理研究

   

毕业学生:惠林林 

  

指导教师:吴唯

  

中文摘要

     

  本文以增韧聚丙烯(PP/膨胀阻燃剂(IFR)阻燃体系为目的,通过沉淀法制备了EPDM-g-MAZn,进一步系统地对比研究了不同加工工艺,及其EPDMEPDM-g-MAHEPDM-g-MAZn三种不同改性剂对PP/IFR阻燃体系的增韧增强等作用效果;提出用经验模型探讨“沙袋结构”的形成机理及其对PP/IFR阻燃体系性能改善的机理分析。

研究发现,IFR的加入量达到一定值以后,阻燃体系的高温热性能及阻燃性能都得到大幅提高,但是由于它与基体差的相容性导致体系的力学性能如韧性和拉伸强度等大幅度降低。添加EPDM以及其接枝后的EPDM-g-MAH作为增韧剂,都能在保持阻燃性能不受较大影响的同时大幅提高其冲击韧性,但是拉伸强度进一步降低使得改增韧体系失去实用价值。接枝后的EPDM-g-MAH进一步改性得到带有离子基团的EPDM-g-MAZn作为改性剂加入到PP阻燃体系中,实验结果证明EPDM-g-MAZn离聚物弹性体的加入可以解决阻燃剂大量加入造成的冲击韧性和拉伸强度降低的问题。

  不同的共混方式会导致最终的复合材料的微观结构的不同,而不同类型的弹性体的加入所形成的沙袋结构的相畴等也会有一定的差异。一定相畴的“沙袋”内外的无机粒子的应力传递及“沙袋”自身的弹性形变保证了一定的阻燃性能的同时达到了有效的增强增韧效果


  Abstract:  

    EPDMEPDM-g-MAH and EPDM-g-MAZn, which was prepared via precipitation process were adopted ,in this study to toughen the PP/IFR system. The influence of EPDMEPDM-g-MAH and EPDM-g-MAZn on the processing of PP/IFR system, toughening effect and mechanism were also studied.The mechanism of the formation of “sandbag structure” was discussed depending on empirical model, along with the mechanism of its effect on the improvement of the flame retardancy of PP/IFR system.

The study shows that introduced flame-retardant system of little amount cannot provide significant improvement of thermal property and flame-retardant property until the amount of IFR reaches a certain amount, during which time the iMPact toughness and tensile strength are massively lowered. The iMPact toughness of EPDM and EPDM-g-MAH introduced system is significantly improved while the flame-retardant property remains almost the same. However, reduce of the tensile strength limits the use. The study also proved that the introduction of ionomer improve the iMPact toughness along with the tensile strength. SEM observations of “sandbag structure” illustrate the distribution difference of different flexibilizers in PP flame-retardant system, as well as the difference in the formation of “sandbag structure” due to different processing. Different processing and dispersed phase domain of toughening system in blends result in the change of mechanical property of the blend. 


论文题目:苯并噁嗪改性环氧树脂/芳纶纤维预浸料及其复合材料的制备与研究

   

毕业学生:姜晨晨 

  

指导教师:吴唯

  

中文摘要    

 

本文选择E-51作为树脂基体,甲基纳迪克酸酐酸酐(MNA)作为固化剂,苄基三乙基氯化铵(TEBAC)为促进剂,芳纶纤维作为树脂基体的增强材料,采用改进后的热熔法制备环氧树脂/芳纶纤维的预浸料。通过差示扫描量热仪,万能电子试验机等设备手段重点研究了固化剂用量,促进剂有无对环氧树脂基体固化温度,力学性能的影响。研究结果表明当E-51:MNA:TEBA=100:57:2时体系的综合性能达到最佳。再添加苯并噁嗪至纯环氧树脂体系中,通过差示扫描量热仪,热失重分析,傅里叶红外光谱仪等测试手段重点研究了苯并噁嗪对环氧树脂体系热性能的影响。研究发现:当环氧树脂:苯并噁嗪=100:40时,含有苯并噁嗪的树脂体系的固化温度略有提高,热分解温度提高10,氮气氛围下的残炭量提高至19.8%

将上述苯并噁嗪改性后的环氧树脂体系与芳纶纤维复合,制备苯并噁嗪改性环氧树脂/芳纶纤维的预浸料。研究了芳纶纤维表面的改性,发现30%的磷酸溶液的改性效果较好。通过研究涂覆温度和热压条件对预浸料的影响得到预浸料的最佳制备工艺:温度为70,热压辊转速为3-4m/min,热压次数为7次。并测试出预浸料的各项物理性能均一稳定,在可控范围之内。

  采用模压法对上述预浸料成型制得复合材料层压板,测定了不同条件下的力学性能,得到最佳的工艺条件,测得其弯曲强度为460.3MPa,层间剪切强度为65.3MPa,纤维体积分数在50%-60%之间。又通过研究复合材料的耐湿热性能,可以知道该复合材料能在较潮湿的条件下使用。通过热失重分析得出,苯并噁嗪改性的环氧树脂/芳纶纤维复合材料的残炭量为33.1%,热分解温度为322℃,在高温下表现出良好的稳定性



  Abstract:  

In this paper, one kind of bisphenol-A epoxy resin-E-51 was chosen as the resin matrix while MNA and TEBAC were used as curing agent and accelerator and the aramid fiber was used as the enhancing material. Epoxy resin/aramid fiber prepregs were prepared through the improved hol-melt route method. The effect of the content of the curing agent and accelerator on the curing temperature and mechanical properties were gotten to know via DSC and mechanical test. The results of the research showed that the matrix system got the best properties when the mass ratio of E-51: MNA: TEBAC was 100:57:2. Then benzoxazine was added into the matrix system. The results of the DSC, TGA and FTIR told the influence on the system of the benzoxazine. When the mass ratio of E-51: benzoxazine was 100: 40, the curing temperature increased a little while the decomposition temperature adding 10and the residual carbon amount adding to 19.8%.

The epoxy resin modified by benzoxazine/aramid fiber prepreg was prepared by the aramid fiber and matrix system obtained by optimized epoxy resin formula.The modification effect on the surface of aramid fiber of 30% phosphoric acid solutionwas proved better. The best preparation method could obtain through the effect research of covering temperature and hot pressing condition. The physical properties of prepreg were stable, unique and under when the roller temperature was 70℃,roller line speed was 3-4m/min and pressed 7 times.

The composite laminates were made of the prepreg by moulding method. The perfect preparation method could be obtained by testing the mechanical properties under different condition. The blending strength was 460.3 MPa, the interlaminar shear strength was 65.3MPa and the fiber volume fraction was between 50%-60%. The composites could be used in a wet environment through the testing of the humidity resistance. The amount of carbon residue of epoxy resin modified by benzoxazine/ aramid fiber composite material was 33.1%, the thermal decomposition temperature was 322 by TGA. That showed a good stability at high temperature.


论文题目:复合材料用聚磷酸铵阻燃环氧树脂体系研究

   

毕业学生:阮明珠 

  

指导教师:吴唯

  

中文摘要    

 

环氧树脂因其具有优良的物理、化学性能、机械性能,如:高拉伸强度和模量、低收缩率、良好的湿热性能、优良的耐化学腐蚀性及电绝缘性,使得其作为工程材料应用较广泛,但是其易燃性限制了其在某些领域的应用。当前,由于卤化阻燃剂在燃烧裂解过程中会产生一些刺激性、腐蚀性的有毒气体,无卤阻燃已成为当下及未来的趋势。而P-N膨胀型阻燃剂(IFR)是目前热门研究对象,但是由于其阻燃效率不高,因此所需添加量较大,导致力学性能的降低。因此,探究一种合适的阻燃协效剂,在减少IFR添加量的同时提高其阻燃性能和力学性能是一个很有意义的研究方向。

本研究以双酚A环氧树脂E-51为树脂基体,通过DSC、水平垂直燃烧仪、LOITGA力学性能等分析测试手段研究了固化剂种类、阻燃剂MFAPP含量及有机硅FCA-117和纳米ZnO对复合材料体系阻燃性能及力学性能的影响。研究结果表明:采用聚醚胺D-230作为固化剂,MFAPP含量为10%wt%,下同),有机硅FCA-117及纳米ZnO分别为1%时,经熔融搅拌共混,按照80/2h+100/2h+120/2h固化制度固化后,整个材料的综合性能达到最佳,LOI31.2,达到UL94 V-0级别,同时力学性能(拉伸强度、冲击强度、弯曲强度)达到原材料的90%左右。

上述优化后的配方制得的环氧树脂混合液,采用经20%磷酸处理后的芳纶纤维作为增强基增强后,采用平板硫化机得到复合材料层压板,经测试,该复合材料LOI32.3,达到UL94 V-0级别,界面结合良好,层间剪切强度达到64.6Mpa,弯曲强度和模量达到未经增强的树脂基体的3倍以上,吸湿率低,耐湿热性能良好。是一种综合性能良好的无卤阻燃复合材料。


  Abstract:  

Due to epoxy resin has a series of excellent physical ,chemical, mechanical properties, such as: high tensile strength and modulus, low shrinkage on cure, good heat & moisture -resistance, excellent chemical resistance and electrical insulation, it is used widely as engineering materials. However, flammability limits its application in some areas. Currently, because halogen flame retardants will release some irritating, corrosive or toxic gases during combustion, halogen-free flame retardants has become a trend. The P-N intumescent flame retardant is hot, however low efficiency results in large amount, mechanical properties are reduced consequently. Therefore, exploring an appropriate synergistic flame retardant to reduce the amount of halogen-free flame retardants, improve its flame retardancy and mechanical properties at the same time is a meaningful research.

In this paper, bisphenol A epoxy resin E-51 is chosen as the resin matrix, by using DSC, UL94, LOI, TGA, Electronic Universal Testing Machines and other tests to study the effect of curing agent types and MFAPP content on flame retardancy and mechanical properties. The synergistic effect between silicone FCA-117 and MFAPP is studied by FT-IRTGA and SEM; the catalytic effect on flame retardancy of  Nano-ZnO is stuied by dynamic FT-IRRaman and TGA. The results show that D-230 polyether amine as curing agent is better than MNA and DDS; adding 10% (wt%) MFAPP, 1% silicone FCA-117 and 1% Nano-ZnO respectively, blending them with stirring and heating, then cured in accordance with the curing system 80/2h +100/2h+120/2h, we get the flame-retarded epoxy. This epoxy resin achieves the best performance, with LOI of 31.2, UL94 V-0 level; at the same time, the mechanical properties (tensile strength, impact strength, bending intensity) reach about 90% of raw materials.

Resin mixture is prepared as the optimized formulation mentioned above, then it is reinforced by kevlar fibers treated with 20% phosphoric acid, cured in vulcanizing machine to obtain composite laminates. The LOI of the composite is 32.3, and it achieves UL94 V-0 level; the interfacial bonding between Kevlar fibers and epoxy is good with interlaminar shear strength of 64.6Mpa; flexural strength and modulus are more than three times than raw resin matrix. With low moisture absorption, good heat-resistant properties, the flame-retarded composite has good overall performances.


论文题目:尼龙6增韧增强材料的制备及其性能研究

   

毕业学生:蔺兴清 

  

指导教师:吴唯

  

中文摘要    

  

  本文采用接枝马来酸酐的聚乙烯-辛烯弹性体(POE--MAH)、酸化多壁碳纳米管(a-MWNTs)对尼龙6PA6)进行增强增强改性,得到高韧高强度的PA6/POE-g-MAH/ a-MWNTs三元共混材料。文章采用万能试验机和冲击试验机研究PA6PA6/POE-g-MAHPA6/POE-g-MAH/(a-)MWNTs共混材料的力学性能;通过转矩流变仪分析POE-g-MAHMWNTsa-MWNTsPA6流变性能的影响;利用热重分析仪测试研究PA6及其共混材料的热性能;采用差示扫描量热仪(DSC)法分析PA6及其共混材料的熔融结晶性能。结合力学性能、断面扫描分析和结晶性能分析增韧和增强机理。

  实验结果表明,POE-g-MAH能够有效改善PA6的缺口冲击强度,与PA6纯样相比,缺口冲击强度由10 kJ/m2提高到63.27kJ/m2,提升6倍,但是拉伸强度由60.61MPa降到33.72MPa,弯曲强度从95.36MPa降低到47.37MPa,均下降约50%,此时POE-g-MAH的添加量为30%。通过母料法共混挤出得到的PA6/POE-g-MAH/MWNTs共混材料,对比PA6的拉伸强度和弯曲强度没有明显提高,而且缺口冲击强度降为40 kJ/m2。当添加酸化碳纳米管后,通过挤出共混得到的PA6/POE-g-MAH/a-MWNTsa-MWNTs 1wt%)共混材料的缺口冲击强度为59.32 kJ/m2,基本保留了POE-g-MAH PA6的增韧效果,拉伸强度和弯曲强度分别为61MPa92MPa,与PA6纯样的拉伸和弯曲强度持平;PA6的最大分解温度提高了40,流变性能得到改善,结晶度得到提高

  

  Abstract:  

 Nylon 6 is touhhened and reinforced by polyethylene-octene copolymer grafed maleic anhydride and acidification of multi-walled carbon nanotubes (a-MWNTs) to gain high toughness and high strength of PA6/POE-g-MAH/a-MWNTs ternary blents in this paper. The universal testing machine and impact testing machine are adopted to research the mechanical properties of PA6, PA6/POE-g-MAH, PA6/POE-g-MAH/ (a-) MWNTs blents. The paper also analyzes the effect of POE-g-MAH, MWNTs and a-MWNTs on the rheological properties of PA6 with torque rheometer;And the paper learns the thermal performance of PA6 and its blents using thermogravimetric analyzer;The melting and crystallization performance of P6 and its blents are analysised by means of diffrential scanning calorimetry (DSC);Paper also studies the toughening and strengthening principle combining with the mechanical propertiesprofile scanning and crystallizationsection performance.

 The experimental results show that, POE-g-MAH can effectively improve the notched impact strength of PA6 with 6 times to 63.27kJ/m2. But the tensile strength is from 60.61MPa to 33.72MPa and the bending strength is from 95.36MPa to 47.37MPa,both of tensile strength and bending strength are reduce 50%the content of POE-g-MAH is 30wt% . PA6/POE-g- MAH/MWNTs blend can be obtained by master batch method extrusion, the tensile strength and bending strength compared to PA6 do not significantly improve, and and notched impact strength is reduced to 40 kJ/m2. When adding acidifiedcarbonnanotubes, there obtain PA6/POE-g-MAH/a-MWNTs(a-MWNTs, 1wt%)  by extrusionnotched impact strength of blends is 59.32 kJ/m2,  retained the the basic toughening effect of POE-g-MAH on PA6 the tensile strength and bending strength are 61MPa and 92MPa, which are same to pure PA6 ; the maximum decomposition temperature of PA6 the increased by 40,rheological performance is improved, the crystallinity is improved.